Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
PLoS Pathog ; 19(4): e1011348, 2023 04.
Article in English | MEDLINE | ID: covidwho-2294124

ABSTRACT

Since the latter part of 2020, SARS-CoV-2 evolution has been characterised by the emergence of viral variants associated with distinct biological characteristics. While the main research focus has centred on the ability of new variants to increase in frequency and impact the effective reproductive number of the virus, less attention has been placed on their relative ability to establish transmission chains and to spread through a geographic area. Here, we describe a phylogeographic approach to estimate and compare the introduction and dispersal dynamics of the main SARS-CoV-2 variants - Alpha, Iota, Delta, and Omicron - that circulated in the New York City area between 2020 and 2022. Notably, our results indicate that Delta had a lower ability to establish sustained transmission chains in the NYC area and that Omicron (BA.1) was the variant fastest to disseminate across the study area. The analytical approach presented here complements non-spatially-explicit analytical approaches that seek a better understanding of the epidemiological differences that exist among successive SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , New York City/epidemiology , SARS-CoV-2/genetics , Fasting
2.
Viruses ; 15(1)2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2228953

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 resulted in the coronavirus disease 2019 (COVID-19) pandemic, which has had devastating repercussions for public health. Over the course of this pandemic, the virus has continuously been evolving, resulting in new, more infectious variants that have frequently led to surges of new SARS-CoV-2 infections. In the present study, we performed detailed genetic, phylogenetic, phylodynamic and phylogeographic analyses to examine the SARS-CoV-2 epidemic in Cyprus using 2352 SARS-CoV-2 sequences from infected individuals in Cyprus during November 2020 to October 2021. During this period, a total of 61 different lineages and sublineages were identified, with most falling into three groups: B.1.258 & sublineages, Alpha (B.1.1.7 & Q. sublineages), and Delta (B.1.617.2 & AY. sublineages), each encompassing a set of S gene mutations that primarily confer increased transmissibility as well as immune evasion. Specifically, these lineages were coupled with surges of new infections in Cyprus, resulting in the following: the second wave of SARS-CoV-2 infections in Cyprus, comprising B.1.258 & sublineages, during late autumn 2020/beginning of winter 2021; the third wave, comprising Alpha (B.1.1.7 & Q. sublineages), during spring 2021; and the fourth wave, comprising Delta (B.1.617.2 & AY. sublineages) during summer 2021. Additionally, it was identified that these lineages were primarily imported from and exported to the UK, Greece, and Sweden; many other migration links were also identified, including Switzerland, Denmark, Russia, and Germany. Taken together, the results of this study indicate that the SARS-CoV-2 epidemic in Cyprus was characterized by successive introduction of new lineages from a plethora of countries, resulting in the generation of waves of infection. Overall, this study highlights the importance of investigating the spatiotemporal evolution of the SARS-CoV-2 epidemic in the context of Cyprus, as well as the impact of protective measures placed to mitigate transmission of the virus, providing necessary information to safeguard public health.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Cyprus/epidemiology , Phylogeny , COVID-19/epidemiology , Genomics , Pandemics
3.
Nat Commun ; 13(1): 6644, 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2106406

ABSTRACT

Current COVID-19 vaccines are based on prototypic spike sequences from ancestral 2019 SARS-CoV-2 strains. However, the ongoing pandemic is fueled by variants of concern (VOC) escaping vaccine-mediated protection. Here we demonstrate how immunization in hamsters using prototypic spike expressed from yellow fever 17D (YF17D) as vector blocks ancestral virus (B lineage) and VOC Alpha (B.1.1.7) yet fails to fully protect from Beta (B.1.351). However, the same YF17D vectored vaccine candidate with an evolved antigen induced considerably improved neutralizing antibody responses against VOCs Beta, Gamma (P.1) and the recently predominant Omicron (B.1.1.529), while maintaining immunogenicity against ancestral virus and VOC Delta (B.1.617.2). Thus vaccinated animals resisted challenge by all VOCs, including vigorous high titre exposure to the most difficult to cover Beta, Delta and Omicron variants, eliminating detectable virus and markedly improving lung pathology. Finally, vaccinated hamsters did not transmit Delta variant to non-vaccinated cage mates. Overall, our data illustrate how current first-generation COVID-19 vaccines may need to be updated to maintain efficacy against emerging VOCs and their spread at community level.


Subject(s)
COVID-19 , Viral Vaccines , Yellow Fever Vaccine , Cricetinae , Animals , Humans , SARS-CoV-2/genetics , Viral Vaccines/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
4.
Philos Trans R Soc Lond B Biol Sci ; 377(1861): 20210242, 2022 10 10.
Article in English | MEDLINE | ID: covidwho-2001544

ABSTRACT

Recent advances in Bayesian phylogenetics offer substantial computational savings to accommodate increased genomic sampling that challenges traditional inference methods. In this review, we begin with a brief summary of the Bayesian phylogenetic framework, and then conceptualize a variety of methods to improve posterior approximations via Markov chain Monte Carlo (MCMC) sampling. Specifically, we discuss methods to improve the speed of likelihood calculations, reduce MCMC burn-in, and generate better MCMC proposals. We apply several of these techniques to study the evolution of HIV virulence along a 1536-tip phylogeny and estimate the internal node heights of a 1000-tip SARS-CoV-2 phylogenetic tree in order to illustrate the speed-up of such analyses using current state-of-the-art approaches. We conclude our review with a discussion of promising alternatives to MCMC that approximate the phylogenetic posterior. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.


Subject(s)
COVID-19 , Software , Algorithms , Bayes Theorem , Humans , Markov Chains , Monte Carlo Method , Phylogeny , SARS-CoV-2/genetics
5.
Science ; 377(6609): 951-959, 2022 08 26.
Article in English | MEDLINE | ID: covidwho-1962061

ABSTRACT

Understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 is critical to preventing future zoonotic outbreaks before they become the next pandemic. The Huanan Seafood Wholesale Market in Wuhan, China, was identified as a likely source of cases in early reports, but later this conclusion became controversial. We show here that the earliest known COVID-19 cases from December 2019, including those without reported direct links, were geographically centered on this market. We report that live SARS-CoV-2-susceptible mammals were sold at the market in late 2019 and that within the market, SARS-CoV-2-positive environmental samples were spatially associated with vendors selling live mammals. Although there is insufficient evidence to define upstream events, and exact circumstances remain obscure, our analyses indicate that the emergence of SARS-CoV-2 occurred through the live wildlife trade in China and show that the Huanan market was the epicenter of the COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , SARS-CoV-2 , Seafood , Viral Zoonoses , Animals , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , China/epidemiology , Humans , SARS-CoV-2/isolation & purification , Seafood/virology , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology
6.
Commun Med (Lond) ; 2: 65, 2022.
Article in English | MEDLINE | ID: covidwho-1947557

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of infections and fatalities globally since its emergence in late 2019. The virus was first detected in Finland in January 2020, after which it rapidly spread among the populace in spring. However, compared to other European nations, Finland has had a low incidence of SARS-CoV-2. To gain insight into the origins and turnover of SARS-CoV-2 lineages circulating in Finland in 2020, we investigated the phylogeographic and -dynamic history of the virus. Methods: The origins of SARS-CoV-2 introductions were inferred via Travel-aware Bayesian time-measured phylogeographic analyses. Sequences for the analyses included virus genomes belonging to the B.1 lineage and with the D614G mutation from countries of likely origin, which were determined utilizing Google mobility data. We collected all available sequences from spring and fall peaks to study lineage dynamics. Results: We observed rapid turnover among Finnish lineages during this period. Clade 20C became the most prevalent among sequenced cases and was replaced by other strains in fall 2020. Bayesian phylogeographic reconstructions suggested 42 independent introductions into Finland during spring 2020, mainly from Italy, Austria, and Spain. Conclusions: A single introduction from Spain might have seeded one-third of cases in Finland during spring in 2020. The investigations of the original introductions of SARS-CoV-2 to Finland during the early stages of the pandemic and of the subsequent lineage dynamics could be utilized to assess the role of transboundary movements and the effects of early intervention and public health measures.

8.
Nat Med ; 28(7): 1476-1485, 2022 07.
Article in English | MEDLINE | ID: covidwho-1830084

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Gamma variant of concern has spread rapidly across Brazil since late 2020, causing substantial infection and death waves. Here we used individual-level patient records after hospitalization with suspected or confirmed coronavirus disease 2019 (COVID-19) between 20 January 2020 and 26 July 2021 to document temporary, sweeping shocks in hospital fatality rates that followed the spread of Gamma across 14 state capitals, during which typically more than half of hospitalized patients aged 70 years and older died. We show that such extensive shocks in COVID-19 in-hospital fatality rates also existed before the detection of Gamma. Using a Bayesian fatality rate model, we found that the geographic and temporal fluctuations in Brazil's COVID-19 in-hospital fatality rates were primarily associated with geographic inequities and shortages in healthcare capacity. We estimate that approximately half of the COVID-19 deaths in hospitals in the 14 cities could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization and pandemic preparedness are critical to minimize population-wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries.


Subject(s)
COVID-19 , Aged , Aged, 80 and over , Bayes Theorem , Brazil/epidemiology , COVID-19/epidemiology , Hospitals , Humans , SARS-CoV-2
9.
Viruses ; 14(5)2022 05 05.
Article in English | MEDLINE | ID: covidwho-1820425

ABSTRACT

The International Virus Bioinformatics Meeting 2022 took place online, on 23-25 March 2022, and has attracted about 380 participants from all over the world. The goal of the meeting was to provide a meaningful and interactive scientific environment to promote discussion and collaboration and to inspire and suggest new research directions and questions. The participants created a highly interactive scientific environment even without physical face-to-face interactions. This meeting is a focal point to gain an insight into the state-of-the-art of the virus bioinformatics research landscape and to interact with researchers in the forefront as well as aspiring young scientists. The meeting featured eight invited and 18 contributed talks in eight sessions on three days, as well as 52 posters, which were presented during three virtual poster sessions. The main topics were: SARS-CoV-2, viral emergence and surveillance, virus-host interactions, viral sequence analysis, virus identification and annotation, phages, and viral diversity. This report summarizes the main research findings and highlights presented at the meeting.


Subject(s)
COVID-19 , Viruses, Unclassified , Viruses , Computational Biology , DNA Viruses , Humans , SARS-CoV-2
11.
Mol Biol Evol ; 39(4)2022 04 11.
Article in English | MEDLINE | ID: covidwho-1758789

ABSTRACT

Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron overall previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , COVID-19/genetics , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
12.
Cell ; 185(7): 1117-1129.e8, 2022 03 31.
Article in English | MEDLINE | ID: covidwho-1682965

ABSTRACT

Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Subject(s)
Animals, Wild/virology , Communicable Diseases, Emerging/virology , Disease Reservoirs , Mammals/virology , Virome , Animals , China , Phylogeny , Zoonoses
13.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: covidwho-1594013

ABSTRACT

The ongoing SARS (severe acute respiratory syndrome)-CoV (coronavirus)-2 pandemic has exposed major gaps in our knowledge on the origin, ecology, evolution, and spread of animal coronaviruses. Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae that may have originated from bats and leads to significant hazards and widespread epidemics in the swine population. The role of local and global trade of live swine and swine-related products in disseminating PEDV remains unclear, especially in developing countries with complex swine production systems. Here, we undertake an in-depth phylogeographic analysis of PEDV sequence data (including 247 newly sequenced samples) and employ an extension of this inference framework that enables formally testing the contribution of a range of predictor variables to the geographic spread of PEDV. Within China, the provinces of Guangdong and Henan were identified as primary hubs for the spread of PEDV, for which we estimate live swine trade to play a very important role. On a global scale, the United States and China maintain the highest number of PEDV lineages. We estimate that, after an initial introduction out of China, the United States acted as an important source of PEDV introductions into Japan, Korea, China, and Mexico. Live swine trade also explains the dispersal of PEDV on a global scale. Given the increasingly global trade of live swine, our findings have important implications for designing prevention and containment measures to combat a wide range of livestock coronaviruses.


Subject(s)
Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , China , Pandemics , Phylogeny , Phylogeography , Porcine epidemic diarrhea virus/genetics , Swine , Swine Diseases/epidemiology , United States
14.
Cell ; 184(20): 5189-5200.e7, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1401295

ABSTRACT

The independent emergence late in 2020 of the B.1.1.7, B.1.351, and P.1 lineages of SARS-CoV-2 prompted renewed concerns about the evolutionary capacity of this virus to overcome public health interventions and rising population immunity. Here, by examining patterns of synonymous and non-synonymous mutations that have accumulated in SARS-CoV-2 genomes since the pandemic began, we find that the emergence of these three "501Y lineages" coincided with a major global shift in the selective forces acting on various SARS-CoV-2 genes. Following their emergence, the adaptive evolution of 501Y lineage viruses has involved repeated selectively favored convergent mutations at 35 genome sites, mutations we refer to as the 501Y meta-signature. The ongoing convergence of viruses in many other lineages on this meta-signature suggests that it includes multiple mutation combinations capable of promoting the persistence of diverse SARS-CoV-2 lineages in the face of mounting host immune recognition.


Subject(s)
COVID-19/epidemiology , Evolution, Molecular , Mutation , Pandemics , SARS-CoV-2/genetics , Amino Acid Sequence/genetics , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , Codon/genetics , Genes, Viral , Genetic Drift , Host Adaptation/genetics , Humans , Immune Evasion , Phylogeny , Public Health
15.
Nature ; 595(7869): 713-717, 2021 07.
Article in English | MEDLINE | ID: covidwho-1287812

ABSTRACT

After the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the virus starting in late summer 2020 that was deadlier and more difficult to contain1. Relaxed intervention measures and summer travel have been implicated as drivers of the second wave2. Here we build a phylogeographical model to evaluate how newly introduced lineages, as opposed to the rekindling of persistent lineages, contributed to the resurgence of COVID-19 in Europe. We inform this model using genomic, mobility and epidemiological data from 10 European countries and estimate that in many countries more than half of the lineages circulating in late summer resulted from new introductions since 15 June 2020. The success in onward transmission of newly introduced lineages was negatively associated with the local incidence of COVID-19 during this period. The pervasive spread of variants in summer 2020 highlights the threat of viral dissemination when restrictions are lifted, and this needs to be carefully considered in strategies to control the current spread of variants that are more transmissible and/or evade immunity. Our findings indicate that more effective and coordinated measures are required to contain the spread through cross-border travel even as vaccination is reducing disease burden.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/prevention & control , Europe/epidemiology , Genome, Viral/genetics , Humans , Incidence , Locomotion , Phylogeny , Phylogeography , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Time Factors , Travel/statistics & numerical data
16.
Viruses ; 13(6)2021 06 09.
Article in English | MEDLINE | ID: covidwho-1264528

ABSTRACT

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulted in an extraordinary global public health crisis. In early 2020, Cyprus, among other European countries, was affected by the SARS-CoV-2 epidemic and adopted lockdown measures in March 2020 to limit the initial outbreak on the island. In this study, we performed a comprehensive retrospective molecular epidemiological analysis (genetic, phylogenetic, phylodynamic and phylogeographic analyses) of SARS-CoV-2 isolates in Cyprus from April 2020 to January 2021, covering the first ten months of the SARS-CoV-2 infection epidemic on the island. The primary aim of this study was to assess the transmissibility of SARS-CoV-2 lineages in Cyprus. Whole SARS-CoV-2 genomic sequences were generated from 596 clinical samples (nasopharyngeal swabs) obtained from community-based diagnostic testing centers and hospitalized patients. The phylogenetic analyses revealed a total of 34 different lineages in Cyprus, with B.1.258, B.1.1.29, B.1.177, B.1.2, B.1 and B.1.1.7 (designated a Variant of Concern 202012/01, VOC) being the most prevalent lineages on the island during the study period. Phylodynamic analysis showed a highly dynamic epidemic of SARS-CoV-2 infection, with three consecutive surges characterized by specific lineages (B.1.1.29 from April to June 2020; B.1.258 from September 2020 to January 2021; and B.1.1.7 from December 2020 to January 2021). Genetic analysis of whole SARS-CoV-2 genomic sequences of the aforementioned lineages revealed the presence of mutations within the S protein (L18F, ΔH69/V70, S898F, ΔY144, S162G, A222V, N439K, N501Y, A570D, D614G, P681H, S982A and D1118H) that confer higher transmissibility and/or antibody escape (immune evasion) upon the virus. Phylogeographic analysis indicated that the majority of imports and exports were to and from the United Kingdom (UK), although many other regions/countries were identified (southeastern Asia, southern Europe, eastern Europe, Germany, Italy, Brazil, Chile, the USA, Denmark, the Czech Republic, Slovenia, Finland, Switzerland and Pakistan). Taken together, these findings demonstrate that the SARS-CoV-2 infection epidemic in Cyprus is being maintained by a continuous influx of lineages from many countries, resulting in the establishment of an ever-evolving and polyphyletic virus on the island.


Subject(s)
COVID-19/epidemiology , Genome, Viral , Phylogeny , SARS-CoV-2/genetics , COVID-19/transmission , Communicable Disease Control , Cyprus/epidemiology , Evolution, Molecular , Humans , Mutation , Nasopharynx/virology , Phylogeography , RNA, Viral/genetics , Retrospective Studies , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification
17.
Curr Protoc ; 1(4): e98, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1173795

ABSTRACT

Advances in sequencing technologies have tremendously reduced the time and costs associated with sequence generation, making genomic data an important asset for routine public health practices. Within this context, phylogenetic and phylogeographic inference has become a popular method to study disease transmission. In a Bayesian context, these approaches have the benefit of accommodating phylogenetic uncertainty, and popular implementations provide the possibility to parameterize the transition rates between locations as a function of epidemiological and ecological data to reconstruct spatial spread while simultaneously identifying the main factors impacting the spatial spread dynamics. Recent developments enable researchers to make use of travel history data of infected individuals in the reconstruction of pathogen spread, offering increased inference accuracy and mitigating sampling bias. Here, we describe a detailed workflow to reconstruct the spatial spread of a pathogen through Bayesian phylogeographic analysis in discrete space using these novel approaches, implemented in BEAST. The individual protocols focus on how to incorporate molecular data, covariates of spread, and individual travel history data into the analysis. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Creating a SARS-CoV-2 MSA using sequences from GISAID Basic Protocol 2: Setting up a discrete trait phylogeographic reconstruction in BEAUti Basic Protocol 3: Phylogeographic reconstruction incorporating travel history information Basic Protocol 4: Visualizing ancestral spatial trajectories for specific taxa.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Travel/statistics & numerical data , Bayes Theorem , COVID-19/genetics , COVID-19/transmission , Computational Biology/methods , Databases, Nucleic Acid , Humans , Phylogeny , Phylogeography/methods , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Sequence Analysis, DNA/methods , Software , United States/epidemiology
18.
PLoS Biol ; 19(3): e3001115, 2021 03.
Article in English | MEDLINE | ID: covidwho-1133664

ABSTRACT

Virus host shifts are generally associated with novel adaptations to exploit the cells of the new host species optimally. Surprisingly, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has apparently required little to no significant adaptation to humans since the start of the Coronavirus Disease 2019 (COVID-19) pandemic and to October 2020. Here we assess the types of natural selection taking place in Sarbecoviruses in horseshoe bats versus the early SARS-CoV-2 evolution in humans. While there is moderate evidence of diversifying positive selection in SARS-CoV-2 in humans, it is limited to the early phase of the pandemic, and purifying selection is much weaker in SARS-CoV-2 than in related bat Sarbecoviruses. In contrast, our analysis detects evidence for significant positive episodic diversifying selection acting at the base of the bat virus lineage SARS-CoV-2 emerged from, accompanied by an adaptive depletion in CpG composition presumed to be linked to the action of antiviral mechanisms in these ancestral bat hosts. The closest bat virus to SARS-CoV-2, RmYN02 (sharing an ancestor about 1976), is a recombinant with a structure that includes differential CpG content in Spike; clear evidence of coinfection and evolution in bats without involvement of other species. While an undiscovered "facilitating" intermediate species cannot be discounted, collectively, our results support the progenitor of SARS-CoV-2 being capable of efficient human-human transmission as a consequence of its adaptive evolutionary history in bats, not humans, which created a relatively generalist virus.


Subject(s)
COVID-19/virology , Chiroptera/virology , SARS-CoV-2/genetics , Viral Zoonoses/virology , Animals , COVID-19/epidemiology , COVID-19/transmission , Evolution, Molecular , Genome, Viral , Host Specificity , Humans , Pandemics , Phylogeny , Receptors, Virus/genetics , SARS-CoV-2/pathogenicity , Selection, Genetic , Viral Zoonoses/genetics , Viral Zoonoses/transmission
19.
Nat Commun ; 11(1): 5110, 2020 10 09.
Article in English | MEDLINE | ID: covidwho-841957

ABSTRACT

Spatiotemporal bias in genome sampling can severely confound discrete trait phylogeographic inference. This has impeded our ability to accurately track the spread of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, despite the availability of unprecedented numbers of SARS-CoV-2 genomes. Here, we present an approach to integrate individual travel history data in Bayesian phylogeographic inference and apply it to the early spread of SARS-CoV-2. We demonstrate that including travel history data yields i) more realistic hypotheses of virus spread and ii) higher posterior predictive accuracy compared to including only sampling location. We further explore methods to ameliorate the impact of sampling bias by augmenting the phylogeographic analysis with lineages from undersampled locations. Our reconstructions reinforce specific transmission hypotheses suggested by the inclusion of travel history data, but also suggest alternative routes of virus migration that are plausible within the epidemiological context but are not apparent with current sampling efforts.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Travel , Bayes Theorem , Betacoronavirus/classification , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/virology , Genome, Viral/genetics , Humans , Pandemics , Phylogeny , Phylogeography , Pneumonia, Viral/virology , SARS-CoV-2 , Travel/statistics & numerical data
20.
Science ; 370(6516): 564-570, 2020 10 30.
Article in English | MEDLINE | ID: covidwho-760215

ABSTRACT

Accurate understanding of the global spread of emerging viruses is critical for public health responses and for anticipating and preventing future outbreaks. Here we elucidate when, where, and how the earliest sustained severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission networks became established in Europe and North America. Our results suggest that rapid early interventions successfully prevented early introductions of the virus from taking hold in Germany and the United States. Other, later introductions of the virus from China to both Italy and Washington state, United States, founded the earliest sustained European and North America transmission networks. Our analyses demonstrate the effectiveness of public health measures in preventing onward transmission and show that intensive testing and contact tracing could have prevented SARS-CoV-2 outbreaks from becoming established in these regions.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Air Travel , COVID-19 , China/epidemiology , Computer Simulation , Contact Tracing , Coronavirus Infections/prevention & control , Evolution, Molecular , Genome, Viral , Germany/epidemiology , Humans , Italy/epidemiology , Mass Screening , Mutation , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Washington/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL